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Résumé chapitre précédent (semaine 6b)
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q Contrainte normale:

𝜎! 𝑥, 𝑦 = −
𝑀" 𝑥
𝐼",$!

𝑦 − 𝑦%

• 𝐼",$!: Moment d'inertie de la section sur un axe 
parallèle à l'axe z passant par l'axe neutre

• 𝐼!,#! = ∫$ 𝑦 − 𝑦% & 𝑑𝑦𝑑𝑧

n 𝑀! 𝑥 = "
#
𝐼!,%'

q Contrainte normale maximum:

𝜎!,&'! 𝑥 =
𝑀" 𝑥
𝐼",$!

𝑐 =
𝑀" 𝑥
𝑆

• 𝑐: Distance maximale vers l'axe neutre

• 𝑆 = &(,)'
' : Module d’inertie élastique

n Deformation Relative normale 𝜀( : 

𝜀+ = −
𝑦 − 𝑦,
𝜌

= −𝜅 𝑦 − 𝑦,

• 𝑦): Position de l'axe neutre

• 𝜌:  Rayon de courbure

• 𝜅 = *
#: Courbure

• 𝑦 − 𝑦): Distance de l'axe neutre

• 𝑦"= Centroïde de la section transverse 
pour poutres mono-matériaux: 

𝑦) =
∫+ . /./0

∫+ /./0

Poutres en flexion pure ou avec forces en y (pas de force axiale)



Résumé ce chapitre (semaine 7) 4

§ Contrainte normale pour les poutres composites: 

𝜎( 𝑦 = −𝐸 𝑦
𝑦 − 𝑦)
𝜌

§ Position de l'axe neutre pour les poutres 
composites: 𝑦) =

∑* "*-*
∑* "*.*

• Q = ∫. 𝑦𝑑𝐴

n Contrainte normale dans les poutres 
composites:

𝜎( 𝑥, 𝑦 = − " % /( (
"&(,)'

𝑦 − 𝑦)

• 𝐸𝐼!,%' = ∑0𝐸0𝐼!,%',0

• 𝑀! 𝑥 = *
# 𝐸𝐼!,%'

§ Contrainte normale pour poutre avec 
charge axiale et flexion: 

𝜎( =
𝐹(
𝐴 − 𝐸

𝑦 − 𝑦)
𝜌

• 𝐹(: Charge axiale,     𝐴: section de la poutre

• 𝑦): Position de l'axe neutre dans la 
poutre en flexion pure.

§ Position de l'axe neutre 𝑦)1 pour les 
poutres avec charge axiale :      

𝑦"# =
$

%( &
'(,)*
(
+ 𝑦"

Poutres avec une charge axiale
Poutres composites 

(sans force axiale)
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Semaine 7 – partie 1
Objectifs d’apprentissage de cette section
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• Savoir utiliser la superposition pour trouver 

• le nouvel axe neutre d’une poutre mono-matériau 
sous charge combinée en x et en y

• Contrainte quand on combine charge axiale et 
flexion



Que ce passe-t-il si une charge axiale (en x) 
est ajoutée à charge en y ?

6

Semaine dernière
(que des moments purs 
et des forces verticales)

Ces slides:
aussi des forces axiales



Où se trouve l’axe neutre?

A. Plus haut que le milieu
B. Au centre de la poutre
C. Plus bas que le milieu

7

10	N

10	N



Contrainte des poutres mono-matériel sous 
charge axiale et transverse 

9

n Nous pouvons appliquer le principe de superposition et 
séparer le problème en: 

¨ Élongation pure (force normale 𝐹𝑥 selon 𝑥)

¨ Flexion pure (due par exemple à une 𝐹$ force selon 𝑦)

La contrainte normale (combinée) est alors:

𝜎! =
"(
#
− 𝐸 $%$)

&
=   "(

#
−22 +

32,34
𝑦 − 𝑦,

Attention 𝑦0 est l’axe neutre en flexion pure

n rappel: axe neutre, c’est l’axe où 𝜎& 𝑦"# = 0

n l'axe neutre 𝒚𝟎 calculé pour la « flexion pure » n’est plus 
le « vrai » axe neutre 𝑦)1 !

+ =
𝑦,

𝐹𝑥

𝐹#

due à 𝐹𝑥 due à 𝐹#

𝑦,4

Contrainte 𝜎'(y)



Contrainte des poutres sous 
charge axiale et transverse 
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n Pour calculer la position du nouvel axe neutre 𝑦)1
(le y où 𝜎𝑥 𝑦 = 0):

𝜎((𝑦 = 𝑦)1 ) = 0 =
𝐹(
𝐴 − 𝐸

𝑦)1 − 𝑦)
𝜌

𝑦)1 =
𝐹(
𝐴𝐸

𝜌 + 𝑦)

𝑦)1 =
𝐹(
𝐴𝐸

𝐸𝐼!,%'
𝑀! 𝑥

+ 𝑦)

𝒚𝟎1 =
𝑭𝒙

𝑴𝒛 𝒙
𝑰𝒛,𝒚𝟎
𝑨

+ 𝒚𝟎

n 𝑦)1 peut être à l'extérieur de la poutre !
Voir Q1 série 7

𝑦,4

𝐹( 𝐹( 𝐹(



Exemple

n Calculer la position de l'axe neutre en fonction de a pour 
une poutre de section carrée t

n Nous appliquons la superposition et divisons le problème 
en deux :
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Charge inclinée

𝐹-

𝐹.

𝐹%

𝛼

𝑡

• Une force verticale appliquée à l’extrémité 
𝐹-/01 = 𝐹% cos 𝛼

• Une force horizontale appliquée à l’extrémité 
𝐹.203" = 𝐹% sin 𝛼



Exemple

Premier problème : que la force 
verticale

n Force de cisaillement: 𝑉 𝑥 = 𝐹:

n Moment de flexion: 𝑀! 𝑥 = 𝐹: 𝑥 − 𝐿

n Distribution de la contrainte 
¨ l’origine est située au milieu de la barre. Ici 𝑦0 = 0

¨𝜎+,<=>?@ 𝑥, 𝑦 = −22 +
32,34

𝑦
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Charge inclinée

𝐹-

𝜎(,;:<=> 𝑥, 𝑦 = −
𝐹: 𝑥 − 𝐿

𝑡?
12

𝑦

  𝜎&,$*+,- 𝑥, 𝑦 =  = − ./$* 012 3
-5

𝑥 − 𝐿 𝑦

y

x

• La valeur de la contrainte à la surface 
de la poutre dépend de 𝑥

• L’axe neutre reste à 𝑦 = 0



Exemple

2ième problème : que la force horizontale

n Force interne: 𝑁 𝑥 = 𝐹@

n Répartition de la contrainte

𝜎+,<AB?C0 𝑥, 𝑦 = <A
D
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Charge inclinée

𝐹.

𝜎(,;@B=0! 𝑥, 𝑦 =
𝐹@
𝐴
=
𝐹) sin 𝛼

𝑡C

y

x



Contrainte du à 𝐹𝑣
(l’axe neutre est au centre)

Contrainte due à 𝐹ℎ
(constante partout)

𝜎(;:<=> 𝑥, 𝑦 = −
12𝐹
𝑡?

𝑥 − 𝐿 𝑦

Contrainte totale

+ =

𝐹=
𝐹=

𝐹A
𝐹A

𝜎(,;@B=0! 𝑥, 𝑦 =
𝐹) sin 𝛼

𝑡C
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On combine (superposition) les deux contraintes



Exemple

n Combinons:

n La position à laquelle le contrainte (et la déformation relative) valent zéro est 𝑦 = 𝑦B’:

n La position de l'axe neutre (où 𝜎( 𝑥 = 0) n'est pas constante le long de la poutre!
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Charge inclinée

𝜎! 𝑥, 𝑦 = −
12𝐹% cos 𝛼

𝑡6
𝑥 − 𝐿 𝑦 +

𝐹% sin 𝛼
𝑡7

𝜎! 𝑥,𝑦B’ = 0

−
12𝐹% cos 𝛼

𝑡6
𝑥 − 𝐿 𝑦B’ +

𝐹% sin 𝛼
𝑡7

= 0

𝑦B’ =
sin 𝛼
cos 𝛼

𝑡7

12
1

𝑥 − 𝐿
=

𝑡7

12
tan 𝛼
𝑥 − 𝐿

!"
#
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Positon axe neutre en fonction de x

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4

-3

-2.5

-2

-1.5

-1

-0.5

0.5

L
0

Diverge vers −∞ pour 𝑥 = 𝐿

𝑦B’
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Semaine 7 – partie 2
Objectifs d’apprentissage

17

• Pour des poutres composites:

• Exprimer la déformation relative 𝜀+ 𝑥, 𝑦 dans les différentes 
couches

• savoir que 𝜀+ 𝑥, 𝑦 est continue

• Exprimer les contraintes 𝜎+ 𝑥, 𝑦 dans les différentes couches

• savoir que 𝜎+ 𝑥, 𝑦 est discontinue

• Calculer l’axe neutre d’une poutre composite 

• Formule flexion pour poutres composites



Poutres composites

n Jusqu’à maintenant, les poutres ont été homogènes, faites d'un seul matériau.

n Nous avons vu que certaines sections sont plus efficaces que d'autres; elles 
peuvent mieux résister aux charges (moment d’inertie Iz)

n nous pouvons faire (beaucoup) mieux avec des composites
¨ comprendre la distribution des contraintes et déformations permet de concevoir 

des poutres plus performantes, plus légères, moins chères, plus efficaces

18

+ moins cher
+ Plus léger
- E plus faible.
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On met à l'extérieur de la 
poutre le matériau “costaud” car 
c’est la que les contraintes sont 
élevées.

Au centre, peu de contraintes, 
on peut utiliser un matériau 
léger et « faible ».
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Déformation relative 𝜺𝒙 dans 
une poutre composite:
quel graphe est juste?

A. A

B. B

C. C

F

𝜀( ∝ (𝑦 − 𝑦)) 𝜀( ∝ (𝑦 − 𝑦)) 𝜀( ∝ (𝑦 − 𝑦))

Pour chaque 
matériau (pente 
différente)

Pour chaque 
matériau et 
discontinuité à 
l’interface

Quizz!



Pour une courbure donnée, la déformation de la 
poutre ne dépend pas de sa composition

Hypothèse: les plans normaux à l'axe de la 
poutre avant la flexion resteront plans après 
fléchissement

𝜀+ = −
𝑦 − 𝑦,
𝜌



Déformation relative ex dans une poutre Composite en 
flexion pure

n Les plans normaux à l'axe de la poutre avant la flexion restent plans après fléchissement

n Après déformation, l'axe neutre garde la même longueur

n Mais pour toute autre ligne parallèle à l’axe neutre: 

𝑑𝑠 = 𝜌 − 𝑦 − 𝑦) 𝑑𝜃 = 𝑑𝑠) − 𝑦 − 𝑦)
𝑑𝑠)
𝜌

→ 𝜀( = −
𝑦 − 𝑦)
𝜌

22

• Dans cette figure, 𝑦 = 0 a été placé à l’axe neutre
• attention: l’axe neutre d’un composite n’est pas situé au centroïde de l’objet!

comme pour une poutre 
mono-matériau, 
raisonnement identique



Contraintes normales sx dans poutre Composite

n 𝜀& = − 454*
6

n le calcul de la contrainte 𝜎( est différent que dans une 
poutre mono-matériau

n Utiliser la loi de Hooke? 

𝜎( = 𝐸𝜀( = −𝐸
𝑦 − 𝑦)
𝜌

Oui, mais pas de façon globale: il faut Hooke couche par couche

23

Flexion pure - Contrainte normale sx en fonction de y

𝜎+,C = 𝐸C𝜀+ = −𝐸C
𝑦 − 𝑦,
𝜌

𝜀(𝑦) est continue, mais 𝜎(𝑦) peut être discontinue aux interfaces

E2>E1

𝜎D = 𝐸L𝜀D 𝜎M = 𝐸N𝜀M

y

𝜎'

y

𝜀'
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𝜎!

y

𝐸𝑏𝑙𝑒𝑢	 > 	𝐸𝑔𝑟𝑖𝑠

𝜺𝒙 𝒚 est continue partout
𝝈𝒙 𝒚 n’est pas continue aux interfaces!

Pente *
"-.*/

Pente *
"0123

  



Est-ce qu’on peut déplacer la zone de contrainte 
max en tirant sur une poutre composite?

A. Vrai

B. Faux



Calcul de l’axe neutre pour une poutre composite
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Sans forces axiales, exemple poutre 2 matériaux

Nous « coupons » (méthode des sections)

Comme zéro force axiale externe, l’équilibre 
des forces en 𝑥 donne 𝑁(𝑥) = 0: 

P𝐹! = 𝑁 = 0

2
1

x

y Ay

MA

Diagramme des forces de la Poutre 
avec forces sans déflection

Même poutre avec forces avec déflection
Les contraintes en x dépendent de y



Calcul de l’axe neutre pour une poutre composite
27

Sans forces axiales, exemple poutre 2 matériaux

𝑁 = 0 =J𝜎(* 𝑑𝐴 +J𝜎(C 𝑑𝐴
section1 section2

𝐸8S(𝑦 − 𝑦%) 𝑑𝑦𝑑𝑧 + 𝐸7S(𝑦 − 𝑦%) 𝑑𝑦𝑑𝑧 = 0
section1 section2

𝑦) =
𝐸*∬* 𝑦 𝑑𝑦𝑑𝑧 + 𝐸C∬C 𝑦 𝑑𝑦𝑑𝑧

𝐸*∬* 𝑑𝑦𝑑𝑧 + 𝐸C∬C 𝑑𝑦𝑑𝑧

𝜎(,0 = −𝐸0
𝑦 − 𝑦)
𝜌

2
1

Attention au choix de l’origine pour les intégrales
∽ Moyenne pondérée

𝑁 = 0 = 6𝜎+ 𝑑𝐴

𝜎'



n Plus généralement, pour une poutre avec n régions différentes dans la section

28

𝑦) =
∑0 ∫𝐸0

𝑦
𝜌 𝑑𝐴0

∑0 ∫
𝐸0
𝜌 𝑑𝐴0

=
∑0 ∫𝐸0𝑦 𝑑𝐴0
∑0 ∫𝐸0 𝑑𝐴0

=
∑0𝐸0 ∫VW>X0 𝑦 𝑑𝑦 𝑑𝑧

∑0𝐸0 ∫VW>X0 𝑑𝑦 𝑑𝑧
=

∑0𝐸0𝑄0
∑0𝐸0𝐴0

= 𝑦)

0 = 𝑁 =E𝜎( 𝑥, 𝑦 𝑑𝑦 𝑑𝑧 =F
0

E𝐸0𝜀( 𝑥, 𝑧 𝑑𝑦 𝑑𝑧 = −F
0

𝐸0 E
!BY< 0

𝑦 − 𝑦)
𝜌 𝑑𝑦 𝑑𝑧 = 0

C’est un centroïde pondéré 
par le module de Young

Calcul de l’axe neutre pour une poutre composite

chaque intégrale est seulement sur la section yz du matériau i:

𝑄4 = 5
567é946: 4

𝑦 𝑑𝑦 𝑑𝑧

Sans forces axiales

𝐴4 = 5
567é946: 4

𝑑𝑦 𝑑𝑧
intégrales  dans plan yz



Contraintes normales dans une poutre Composite
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Statique donc ∑𝑀 = 0 pour chaque section du plan yz

𝑀0 𝑥 +6𝜎+ 𝑥, 𝑦 𝑦 − 𝑦, 𝑑𝐴 = 0

𝑧

𝑦

Lien entre Moment de flexion 𝑀𝑧(𝑥) et Contraintes normales 𝜎+ 𝑥, 𝑦

𝑀𝑧 𝑥 = 𝑀0 et   𝑁(𝑥) = 0

Moment des forces 𝜎! 𝑥, 𝑦 à partir de l’axe neutre 

𝑥

𝑦

𝑀0

On impose un 
moment 𝑀" à 
l’extrémité

𝜎'

𝑀0 𝑀𝑧

𝑥



Contraintes normales dans une poutre Composite

Nous pouvons calculer le moment créé par les contraintes normales (par rapport 
à l'axe neutre)

𝑀0 𝑥 = −∬𝜎+ 𝑥, 𝑦 𝑦 − 𝑦, 𝑑𝐴 = ∑C∬𝐸C
.X.4 `

Y
𝑑𝐴

𝑀0 𝑥 =
1
𝜌
𝐸𝐼0,.4

avec   𝐸𝐼0,.4 = ∑C 𝐸C∬ 𝑦 − 𝑦, N 𝑑𝐴 = ∑C 𝐸C𝐼0,.4,C

n Note: Si l'origine est prise sur l'axe neutre: 𝑦) = 0

30

Lien entre Moment de flexion 𝑀𝑧(𝑥) et Contraintes normales 𝜎+ 𝑥, 𝑦

Formule flexion 
pour poutres 
composites

𝜎+ 𝑥, 𝑦 = −
𝐸 𝑦 𝑀0 𝑥
𝐸𝐼0,.4

𝑦 − 𝑦,

Rigidité en flexion

𝐼!,#!,4 = moment d’inertie de l’objet “i” par 
rapport à l’axe neutre y0 du composite (pas par 
rapport à l’axe neutre de l’objet i !)



Exemple composite. 

n Trouver les coordonnées x et y des points où la 
contrainte normale sera maximum

n Pour maximiser  𝜎( nous devons:
1. Trouver x pour lequel 𝑀" 𝑥 est maximum

2. Trouver y pour lequel  𝐸 𝑦 𝑦 − 𝑦% est maximum

3. Calculer 𝐸𝐼",$!

Poutre composite avec 2 charges ponctuelles selon y

31

2𝑎 = 2	mm

𝑏 = 3	mm3𝑏
4

𝐸1 = 300	GPa

𝜎! 𝑥, 𝑦 = −
𝐸 𝑦 𝑀" 𝑥
𝐸𝐼",$!

𝑦 − 𝑦%

poutre de section rectangulaire, 
2 matériaux

𝑥
𝑦

𝑧
𝑦

𝐸< = 300	Gpa
𝐸& = 100	GPa

𝐸2 = 100	GPa



Exemple composite

n Partie 1:
¨ Calculer (puis maximiser) 𝑀" 𝑥

n 𝑀! 𝑥 est maximum pour 𝑥 = 2 m; 𝑀! 𝑥 = 2 m = 3 ab
c

32

𝑀" 𝑥 = `
−2𝑥 𝑘𝑁.𝑚	 0 ≤ 𝑥 ≤ 1
5𝑥 − 7𝑘𝑁.𝑚 1 ≤ 𝑥 ≤ 2
−3𝑥 + 9𝑘𝑁.𝑚. 2 ≤ 𝑥 ≤ 3

𝑉 𝑥 = `
−2	kN	 0 ≤ 𝑥 ≤ 1
5	kN 1 ≤ 𝑥 ≤ 2
−3	kN	 2 ≤ 𝑥 ≤ 3

𝑥
𝑦



Exemple composite

n Partie 2
¨ Maximiser 𝐸 𝑦 𝑦 − 𝑦%
¨ Nous calculons d'abord la position de l'axe neutre:

33

𝑦) =
∑0 ∫𝐸0𝑦 𝑑𝐴
∑0 ∫𝐸0	𝑑𝐴

𝑦, =
kd ∫2e4

2e`f /0 ∫4

gh
i . /. lk` ∫2e4

2e`f /0 ∫gh/i
h . /.

kd ∫2e4
2e`f /0 ∫4

gh
i /.lk` ∫2e4

2e`f /0 ∫gh/i
h /.

=
300 GPa · 2𝑎 · ∫%

:;
6 𝑦 𝑑𝑦 + 100 GPa · 2𝑎 · ∫:;

6

; 𝑦 𝑑𝑦

300 GPa · 2𝑎 · 3𝑏4 + 100 GPa · 2𝑎 · 𝑏4

𝑦) =
17
40
𝑏 = 0.425𝑏

2𝑎 = 2	mm

𝑏 = 3	mm
3𝑏
4

𝑧
𝑦

notez que 
𝑦2 < 0.5𝑏 car 𝐸3 > 𝐸4
𝑦2 >

5
6𝑏 car la partie bleue existe

𝐸1 = 300	GPa

𝐸2 = 100	GPa



34

Pente: 1/Evert

𝜎! 𝑥, 𝑦 = −
𝑀" 𝑥
𝐸𝐼",$!

𝐸(𝑦) 𝑦 − 𝑦%

𝑀" 𝑥 = `
−2𝑥 𝑘𝑁.𝑚	 0 ≤ 𝑥 ≤ 1
5𝑥 − 7𝑘𝑁.𝑚 1 ≤ 𝑥 ≤ 2
−3𝑥 + 9𝑘𝑁.𝑚. 2 ≤ 𝑥 ≤ 3

Pour un x donné



n Partie 2: Maximiser 𝐸 𝑦 𝑦 − 𝑦)

¨ Nous avons trouvé l'axe neutre: 𝑦% =
8<
6%
𝑏

¨ Nous comparons 𝐸𝑖(𝑦 − 𝑦𝑜) sur la surface supérieure et la surface inférieure de la 
poutre, car c’est à ces endroits que (𝑦 − 𝑦0) est le plus grand.

• 𝐸 𝑦7?@ 𝑦7?@ − 𝑦% = 𝐸 𝑦 = 𝑏 𝑏 − <A
B%
𝑏 = 100GPa · &C

B%
𝑏 = 57.5 GPa b

• 𝐸 𝑦D?7 𝑦D?7 − 𝑦% = 𝐸 𝑦 = 0 0− <A
B%
𝑏 = 300GPa · <A

B%
𝑏 = 127.5 GPa b

¨ Le maximum de 𝐸 𝑦 𝑦 − 𝑦% est donc tout en bas de la poutre à 𝑦 = 0

35

2𝑎 = 2	mm

𝑏 = 3	mm
3𝑏
4 300	GPa

100	GPa

Axe neutre

Pente: 1/Evert

𝜎! 𝑥, 𝑦 = −
𝑀" 𝑥
𝐸𝐼",$!

𝐸(𝑦) 𝑦 − 𝑦%

La contrainte est maximum à x=2 m et y=0 m 
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Exemple composite

n Partie 3:  Calcul de 𝐸𝐼!,%'
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300 GPa

100 GPa

𝜎E 𝑥, 𝑦 = −
𝐸 𝑦 𝑀! 𝑥
𝐸𝐼!,#!

𝑦 − 𝑦%

𝐸𝐼!,%' = 𝐸*𝐼*,%B + 𝐸C𝐼C,%B= 

= 𝐸*( 𝐼*,%* + 𝐴* 𝑦* − 𝑦) C) + 𝐸C( 𝐼C,%C + 𝐴C 𝑦C − 𝑦) C)

(utiliser Steiner pour décaler les axes pour le calcul des 𝐼0, 𝑦B)

𝐼*,%* =
2𝑎 (3𝑏/4)q

12
𝐼C,%C =

2𝑎 (𝑏/4)q

12
𝑦3

𝑦4

𝑦3 =
3𝑏
8

𝑦4 =
𝑏
8
+
𝑏
2Puis un peu d’algèbre pour trouver 𝐸𝐼!,%' …



Est-ce que le maximum de 𝐸(𝑦)(𝑦 − 𝑦0)	aurait pu être à l’interface? 
Par exemple, si la partie bleu est souple, eg  Ebleu = 1 GPa ?
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2𝑎 = 2	mm

𝑏 = 3	mm3𝑏
4 300	GPa

1	GPa
𝑧

𝑦

• Dans ce cas, les contrainte à 𝑦 = 0 (en bas)  
et à 𝑦 = 3𝑏/4	(l’interface) seront quasi-
égales, et toutes 2 beaucoup plus grandes 
qu’à y=b (le dessus)

• Mais toujours contrainte bas > contrainte à 
interface, car y0 sera toujours juste un poil 
plus haut  que 3𝑏/8, car la partie molle 
bleue décallera toujours l’axe neutre vers 
le haut.

Pente *"F
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Ici, à 3 couches, la contrainte max est aux interfaces

Egrand

Epetit

Epetit Dans ce cas, la contrainte peut être maximum 
aux interfaces plutôt qu’aux bords de la poutre

𝜎+

y


