Semaine 7

Charges axiales

PARTIE 1: (slide 6 - 18)

Poutres chargées axialement
(Chapitre 5.12 de Gere et Goodno)

PARTIE 2:

Poutres Composites
(Chapitre 6 de Gere et Goodno)
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Résumé chapitre précédent (semaine 6b)

Poutres en flexion pure ou avec forces en y (pas de force axiale)

m Deformation Relative normale ¢, :
Y — Yo
Ex = — o = —k(y — ¥o)

Yo: Position de l'axe neutre

p: Rayon de courbure
K= %: Courbure

y — yo: Distance de l'axe neutre

* Yo= Centroide de la section transverse
pour poutres mono-matériaux:

_fA y dydz
J, dydz

Yo

O Contrainte normale:
M, (x)

I

Z,Yo

ox(x,y) = — v — ¥o)

I,,,: Moment d'inertie de la section sur un axe

paralleéle a l'axe z passant par l'axe neutre

Ly, = [, O —y0)* dydz

E
m M,(x) = ;Iz,yo

O Contrainte normale maximum:
M, (x)] . M, (x)]
I S

Z,Yo

| Ox max (x) | =

C: Distance maximale vers l'axe neutre

Iz
S = % : Module d’inertie élastique




Résumeé ce chapitre (semaine 1)

Poutres avec une charge axiale

Poutres composites

(sans force axiale)

Contrainte normale pour poutre avec
charge axiale et flexion:

F _
Ux:Zx_Ey pyO

F,: Charge axiale, A:section de la poutre

Yo: Position de l'axe neutre dans la
poutre en flexion pure.

Position de l'axe neutre y| pour les
poutres avec charge axiale :

. F Izyg
yO - MZ(X) A +y0

® Contrainte normale pour les poutres composites:

ou(y) = —E(y) 2—22

® Position de l'axe neutre pour les poutres

. %i EiQi
composites: = =
p Yo X EiAi

- Q=J, ydA

m Contrainte normale dans les poutres
composites:

_ E(y)Mz(x)
(ElLy,)

* (Elz,y()) - ZiEiIz,yo,i

+ My(x) = %(Elz,yo>

ox(x,y) = vy —¥o)




Semaine 7 — partie 1
Objectifs d’apprentissage de cette section

* Savoir utiliser la superposition pour trouver

* le nouvel axe neutre d’une poutre mono-matériau
sous charge combinée en xeteny

 Contrainte quand on combine charge axiale et
flexion



Que ce passe-t-il si une charge axiale (en x) Lo
est ajoutée a chargeeny ?

Semaine derniére Ces slides:

(que des moments purs aussi des forces axiales
et des forces verticales)



Ou se trouve l’'axe neutre?

A. Plus haut que le milieu
B. Au centre de la poutre

c. Plus bas que le milieu

10N

10N



Contrainte des poutres mono-matériel sous i
charge axiale et transverse Yo p

A 7
= W B
m Nous pouvons appliquer le principe de superposition et | Fy

séparer le probléme en:

0 Elongation pure (force normale F, selon x)

y
O Flexion pure (due par exemple a une F, force selon y) V » M
La contrainte normale (combinée) est alors: El —X
’ N
Fy Y=Yo _ Fx Myx) D |
Oy = — L = vy = ¥o)
A p A Izy,
® @ @ A
Attention y, est ’axe neutre en flexion pure R ’
N _ Yo

Y

m rappel: axe neutre, c’est ’axe ot g, (yy) = 0

\

Ty 0_ >

m 1'axe neutre y, calculé pour la « flexion pure » n’est plus @ @ ®
le « vrai » axe neutre y, !

dueaF, due a F,
Contrainte g, (y)



Contrainte des poutres sous

charge axiale et transverse

m Pour calculer la position du nouvel axe neutre y,

(le y ot 0,(y) = 0):

, E Yo — Yo
O'x(J’ZYO)ZO:Zx_E p

E

P X
J’O—AEP‘l‘YO

m y, peut étre a l'extérieur de la poutre !

—ﬁ

® © O

) é NN

EEA & ™ lyé
® ® @ ®

Y

E, Fy x

Voir Q1 série 7



Exemple

Charge inclinée

m Calculer la position de 1'axe neutre en fonction de o pour
une poutre de section carrée ¢

m Nous appliquons la superposition et divisons le probléme
en deux :

* Une force verticale appliquée a I’extrémité
Fyere = Fo cos(a)

7

* Une force horizontale appliquée a I’extrémité
Froriz = Fo sin(a)

7




Exemple

Charge inclinée

Premier probleme : que la foxce
verticale

m Force de cisaillement: V(x) = E,
m Moment de flexion: M,(x) = F,(x — L)

m Distribution de la contrainte

O 'origine est située au milieu de la barre. Ici y; = 0

M, (x)
DUx,Fvert(x» y) = ——=
F,(x — B}y
O'x,Fvert(x» y) = — t—4y
12
12F, cos(a)
Gx,Fvert(x: y) - == 0t4 (x — L)y

La valeur de la contrainte a la surface
de la poutre dépend de x
I’axe neutre resteay = 0




Exemple

Charge inclinée

2i¢me pyobléme : que la force horizontale

m Force interne: N(x) = F),

m Répartition de la contrainte

Fp
Ox Fhoriz (x,y) = y

F, Fysin(a)

Ox Fhoriz (x: y) = X — +2

y Y VY




On combine (superposition) les deux contraintes

12F Fy sin(a)
Oxrvert(X,Y) = e (x — L)y Ox,Fhoriz(X,Y) = iz

@ @/ _@/
é A s —/
©,

A ¥
&)

Contraintedua F, Contrainte due a F,

(I'axe neutre est au centre) (constante partout) .
Contrainte totale
F,
F /] l v
/| l v /
d - /1 3 Fp
/] e— ) :

h T~
/]
/]



Exemple
Charge inclinée N

<

m Combinons:

12F, cos(a) Fy sin(a)
ox(x,y) = — °t4 (x—L)y+°t—2

m La position a laquelle le contrainte (et la déformation relative) valent zéro est y = y,’:

a,(x,9,) =0
12F, cos(a) ,  Fysin(a)
— " (x — L)y, + -
. sin(a) t* 1 t? tan(a)
Yo = cos(@)12x—-L 12 x-1L

m La position de l'axe neutre (ou g, (x) = 0) n'est pas constante le long de la poutre!



Positon axe neutre en fonction de x

w
n
)
)

\
\
\
\
0

Diverge vers —oo pour x = L



Semaine 7 — partie 2
Objectifs d’apprentissage

* Pour des poutres composites:

« Exprimer la déformation relative ¢, (x, y)dans les différentes
couches

« savoir que ¢,(x,y) est continue

« Exprimer les contraintes g, (x, y) dans les différentes couches
* savoir que o, (x,y) est discontinue

* Calculer I’axe neutre d’une poutre composite

 Formule flexion pour poutres composites



Poutres composites

m Jusqu’a maintenant, les poutres ont ét€ homogenes, faites d'un seul matériau.

m Nous avons vu que certaines sections sont plus efficaces que d'autres; elles
peuvent mieux résister aux charges (moment d’inertie I,)

m nous pouvons faire (beaucoup) mieux avec des composites

O comprendre la distribution des contraintes et déformations permet de concevoir
des poutres plus performantes, plus légéres, moins cheres, plus efficaces

I I
+ moins cher
I “~_| + Plus léger
- E plus faible.

I




On met a l'extérieur de la
poutre le matériau “costaud” car
c’est la que les contraintes sont
élevées.

Au centre, peu de contraintes,
on peut utiliser un matériau
léger et « faible ».




Déformation relative ¢, dans

une poutre composite:

quel graphe est juste?

. A
N N
C
i .
e
&x % (¥ — Yo)

B
\’\7
\ >
e
Ex % (¥ — Yo)

Pour chaque

matériau (pente

différente)

\

MV

&x < (¥ = Yo)
Pour chaque
matériau et
discontinuité a
I'interface




Pour une courbure donnée, la déformation de la
poutre ne dépend pas de sa composition

:
!
|

SsagsgERgEzsacsae:

Hypothese: les plans normaux a l'axe de la
poutre avant la flexion resteront plans apres
fléchissement



Déformation relative ¢, dans une poutre Composite en
flexion pure

m Les plans normaux a l'axe de la poutre avant la flexion restent plans apres fléchissement

m Apres déformation, l'axe neutre garde la méme longueur

m Mais pour toute autre ligne paralléle a ’axe neutre:

ds y—y comme pour une poutre
ds=(p - —y0))db =dsy — (¥ —yo) — = | &=——-

X mono-matériau,
raisonnement identique

Dans cette figure, y = 0 a été placé a I’axe neutre
attention:1’axe neutre d’un composite n’est pas situé au centroide de I’objet!



Contraintes normales ¢, dans poutre Composite

Flexion pure - Contrainte normale 6, en fonction de y

Y—Yo
p

mE, = —

m le calcul de la contrainte o, est différent que dans une
poutre mono-matériau

m Utiliser la loi de Hooke?

.\‘

Oui, mais pas de facon globale: il faut Hooke couche par couche
— A
oq4 = Eq¢4 op = Ezéep
c
Y—Yo | -
Ox; = Ejgy = —E;— z | ____\ __________
p [@ 0 \p

£(y) est continue, mais g(y) peut étre discontinue aux interfaces




£,(y) est continue partout

o,(y) n’est pas continue aux interfaces!

Ebleu > Egris

Pente
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Est-ce qu’on peut déplacer la zone de contrainte
max en tirant sur une poutre composite?

A. Vrai

B. Faux




Calcul de I’axe neutre pour une poutre composite

Sans forces axiales, exemple poutre 2 matériaux

MA V M
QN | 9}

y i I By

L Diagramme des forces de la Poutre

X avec forces sans déflection

Nous « coupons » (méthode des sections)

Comme zéro force axiale externe, 1’équilibre
des forces en x donne N(x) = 0:

ZFX:Nzo

Méme poutre avec forces avec déflection
Les contraintes en x dépendent de y




Calcul de I’axe neutre pour une poutre composite

Sans forces axiales, exemple poutre 2 matériaux

N=O=H0x1dA+ﬂax2dA

sectionl section?2

B [[ 0= yo dydz+ B, || & - o) dydz = 0

sectionl section?

N=0= ﬂ o, dA
o = E ff, ydydz+E, [f, ydydz
=
Ei[f, dydz+E, [[, dydz

~ Moyenne pondérée

Attention au choix de l'origine pour les intégrales



Calcul de I’axe neutre pour une poutre composite

Sans forces axiales

m Plus généralement, pour une poutre avec n régions différentes dans la section

0=N= ﬂax(x,y)dydz =ZJfEiex(x,z)dydz = —ZEi

zonel

chaque intégrale est seulement sur la section yz du matériau i:

Y an.
ZifEipdAl _ YiJEydAr  NiE [, ydydz

2 EiQ _ C’est un centroide pondeére

Yo = E. - ] -
Zif;ldAi ZifEl d4; i Ei fmat—i dy dz

> EA; = Yo par le module de Young

Qi = j ydydz
matériau i

Ai = f dy dz
matériau i intégrales dans plan yz




Contraintes normales dans une poutre Composite

Lien entre Moment de flexion M,(x) et Contraintes normales o, (x,y)

M,

ke

V /TN
S =

On impose un
moment M, a X

y b , (s
‘|‘ I'extrémité M,(x) =My, et N(x)=0

Statique donc ) M = 0 pour chaque section du plan yz

M, (x) + jj 02 (6, )y = o) dA = 0

Moment des forces o, (x, y)a partir de I'axe neutre



. . 30
Contraintes normales dans une poutre Composite Lo

Lien entre Moment de flexion M,(x) et Contraintes normales o, (x,y)

Nous pouvons calculer le moment créé par les contraintes normales (par rapport
a l'axe neutre)

M,() = =[] 0 O = yo) dA = T4 [ B O d4

1
M,(x) = ;(Elz,yo)

avec (Elz’y()) = Zi Ei ff(y — yO)Z dA = Zi Eilz,yo,i Rigidité en flexion

Formule flexion
E(y)M,(x)
Ox (x; }’) - z (y — yO) pour p0}1tres
(E [ Z,Yo ) composites

Iy, = moment d’inertie de I'objet “i”’ par
m Note: Sil'origine est prise sur l'axe neutre: y, = 0 rapport a ’axe neutre y, du composite (pas par
rapport a I’axe neutre de ’objet i !)



Exemple composite.

Poutre composite avec 2 charges ponctuelles selon y

- . N 2a = 2 mm
m Trouver les coordonnées x et y des points ou la «—

contrainte normale sera maximum E; = 100 GPa

3b| Ei=300GPa| } — 3 mm

E(y)M,
o (x,y) = — ((?1 ()x) o —yo0) 4 y1 5
Z,Yo

Z

poutre de section rectangulaire,
2 matériaux

m Pour maximiser o, nous devons:
1. Trouver x pour lequel M,(x) est maximum
2 kN 8 kN

2. Trouver y pour lequel E(y)(y — y,) est maximum
3. Calculer (El,,,)

E; = 300 Gpa
E, =100 GPa



Exemple composite

m Partie 1:

0 Calculer (puis maximiser) M, (x)

—2kN 0<x<1
V(x) ={ 5kN 1<x<2 M,(x) =
—3kN 2<x<3

m M,(x) est maximum pour x = 2 m;

—2xkN.m 0<x<1
S5x —7kN.m 1 <x<?2
—3x+9kN.m. 2<x<3

kN
Mz(x=2m)=33




Exemple composite

2a = 2 mm
«—>
. E,; = 100 GPa
m Partie 2
0 Maximiser E(y)(y — ¥o) % et |
O Nous calculons d'abord la position de 1'axe neutre: 7, >
, _ if EiydA
0=
> J E; dA
2 3D 2
z=2a z=2a
By 2% dz [ y dy +E, [0z [}, , v dy
Yo = , 3b ] )
z=2a z=2a
Elf dz f4 dy'I'EZf Zf3b/4_dy
3b
300 GPa - 2a - [* ydy + 100 GPa - 2a - fgbydy
300 GPa-2a-%+ 100 GPa-Za-%
notez que

Yo < 0.5bcarE; > E,
Yo = E b = 0.425b Yo > zb car la partie bleue existe



M, (x)
(E1

Z,Yo

O-x(xry):_ )E(Y)(Y_YO)

—2x kN.m 0<x<1
M,(x) =3 5x—7kN.m 1 <x <2
—3x+9kN.m. 2<x <3

AT

Uee! (J/

Pour un x donné



M, (x) 2a =2
o, (x,y) = — EW)» = yo) 4 >
(ELy,) 100 GPaI
b =3mm
m Partie 2: Maximiser E(y)(y — vy,) 3b
: 0 4] 300GPa |

, 17
0 Nous avons trouvé l'axe neutre: y, = Rb

0 Nous comparons E;(y — yo) sur la surface supérieure et la surface inférieure de la
poutre, car c’est a ces endroits que (y — y,) est le plus grand.

e E(yeop)|Veop —¥o| = E(y=b)|pb—Zb| = 100GPa-Zb = 57.5GPab s

e EQboo)Yoor — Yol = EG=0)[0~p| = 300GPa-2h = 127.5GPab

g

Axe neutre

O Le maximum de E(y)(y — y,) est donc tout en bas de lapoutreay =0

La contrainte est maximum a x=2 m et y=0 m

Pente: 1/E, .



8 kN

2 kN




- ax(x,y) = EQM () &= ¥o)
Exemple composite e (Ely) ~
m Partie 3: Calcul de (El,,, ) 2 kN S kN
A J A 4
(Elz,y()) = Elll,yo + EZIZ,y0= | |
I m I m 1 m '
| ] |
=E1 (I y1 +A1(y1 — Y0)?) + Ex( Iy + Az (Y2 — Yo)%)
(utiliser Steiner pour décaler les axes pour le calcul des [;, y,)
3 3 100 GPa
_ Qa)(3b/4) _Qa)(b/4) .
1,y1 — 2,y2 —
12 12 300 GPa Tyl
o
3b
V1= 8
b b
Puis un peu d’algébre pour trouver (El,,, ) ... Y2=gty3



Est-ce que le maximum de E(y)(y — y,) aurait pu étre a 'interface?
Par exemple, si la partie bleu est souple,eqg E, ., =1 GPa?

 Dans ce cas, les contrainte a y = 0 (en bas)

etay = 3b/4 (I'interface) seront quasi- 2a = 2mm yT_)
égales, et toutes 2 beaucoup plus grandes 1 GPa ’
qu’a y=b (le dessus) ibI b= 3mm
4] 300 GPa
 Mais toujours contrainte bas > contrainte a /\%

interface, car y, sera toujours juste un poil
plus haut que 3b/8, car la partie molle
bleue décallera toujours I’axe neutre vers
le haut.




Ici, a 3 couches, la contrainte max est aux interfaces

Dans ce cas, la contrainte peut étre maximum
aux interfaces plutét qu’aux bords de la poutre
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